
pulsation velocity amplitude; Rere = ~d/v, reduced Reynolds number defined on the integral- 
mean relative flow velocity; Wo, W*, N, steady-flow, instantaneous pulsation, and integral- 
mean pulsation velocities, respectively; mA, pulsation velocity amplitude; ~ = ~A/Wo, ratio 
of pulsation velocity amplitude to steady velocity component; m = 2wf, cyclic frequency; A, 
pulsation amplitude; k, mass-transfer coefficient; d, diameter of experimental sample; D, 
diffusion coefficient of benzoic acid in water; v, kinematic viscosity coefficient; AG, weight 
loss of dissolved sample; AC, difference between saturation concentration and concentration 
in main mass of the solution; F, dissolution surface; r, dissolution time. 
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FREE CONVECTION IN A HETEROGENEOUSLY CATALYZED REACTION 

K. V. Pribytkova, S. I. Khudyaev, 
and E. A. Shtessel' 

UDC 536.25 

Limits have been defined for the monotonic convective instability in a horizontal 
layer of gas when a heterogeneous catalyzed reaction occurs at the lower boundary. 

If a heterogeneous reaction is to be conducted under given conditions, it is necessary 
to know the precise details of the heat and mass transfer; in some instances, natural con- 
vection can accelerate the heat and mass transfer substantially, which can react back on the 
process. Therefore, it is important to define the conditions for free convection. 

Consider an unbounded planar horizontal layer filled with a reacting liquid or gas and 
bounded by solid surfaces; a constant temperature and a constant reagent concentration are 
maintained at the upper surface. The lower surface is provided by the catalyst and is ther- 
mally insulated from the environment; the surface produces a catalytic reaction of the type 

k(T) 

Convection can arise under such circumstances on account of the heating (cooling) at the sur- 
face and on account of the difference in molecular weight between the initial substances and 
the products. 

The dimensionless equations are as follows in the Boussinesq approximation: 

OV 
' P r  VvV = - - V P  -+- P r  A V  -!- (R iO & R2a ) $,, ( t )  

aa 
. . . .  PrVva = Aa, (2) 
O~ 

O0 ( l ) 
0~- -+- P r  l/VO == LAO L - -  , ( 3 )  

Le  

div V = 0 (4) 

subject to the boundary conditions [I] 

z-I, V=0= a=0, (5) 

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Translated from 
Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 5, pp. 818-826, May, 1978. Original article 
submitted April 12, 1977. 

0022-0841/78/3405-0557507.50 �9 1978 Plenum Publishing Corporation 557 



Oa O0 
z = O ,  V - - O ,  - -  ~ = ~, ( 1 - -  a) exp O, - - - - = 6 ( 1 - - a ) e x p O .  ( 6 )  

Oz Oz 

We use the following scale quantities: length h, velocity ~/h, temperature RT~/E, pres- 
sure oo~D/h 2, and time haD. 

There are six dimensionless parameters in (1)-(6): the Prandtl number Pr, the Lewis 
number Le, the Rayleigh number R,, the concentration analog of the Rayleigh number Re, Frank- 
Kamenetskii's parameter ~ for heterogeneous catalyzed reactions [i], and parameter y, which 
represents the ratio of the reaction rate to the diffusion rate: 

v D g~ RT ] g~ 
P r = - ~ ,  L e = - -  R t = - -  h 3, R~. . . . . . . .  h ~, 

• ' v D  E vD 

Q .  E E ko exp ( E ) h  

6 =  ~. l RT~ hk~ exp ( - - - -  ) o 7--  D RT~ 

The steady-state equations are solved for V = 0 to give the temperature Oo and the con- 
centration ao at mechanical equilibrium: 

v ( l - -z ) ,  O 0=A(l-z), a o - A  -~- 

where A is the temperature at the boundary z = 0 and is given by 

6~A (? -~ exp(-- A)) (7) 

We envisage equations in variations about mechanical equilibrium of the form 

a 0 ] 
- -  = u(z)~2, --v(z)~, A P r  - -  m --  o~(z)~, 
y 6 6 

q: =.- exp ('ht -i- ikiy -- ik.2x) �9 

The horizontal components of the velocity and pressure are eliminated in the usual way. 
Here we examine the limit to monotonic stability (we seek to define a relationship between 
the parameters such that X = 0 is an elgenvalue). We put X = 0 and introduce the symbols 

~ = k ~ +  k~, B=3,.expA 

to get the following system of equations: 

u"--~u -!-o) = 0, (8) 

Lv"--L~u -" ~o = 0, (9) 

{ !  R2u + R~v) = O. (i0) r 2r176 @ ~2r A~ k 6 

The boundary conditions are 

z = 0; o = ~o' ,= 0; u '=v '=Bu--Av;  
(ll) 

z = : l ;  ~ = ~ ' = 0 ;  u - - v = 0 .  

It is complicated to define the exact limits for convection for L # i, and very cumber- 
some expressions are involved; various approximate variational methods are also difficult to 
implement, although they are widely used in calculations on the limit to thermal gravitational 

convection [2-4]. 

Here we derive the critical Rayleigh number Rx = f(Y, 6, L, ~, Re) by solving algebraic 
equations arising as difference equations on simple nets with few nodes. 

Of course, this cannot be expected to give more than a qualitative result, but we shall 
see below that quite good quantitative results are obtained for the critical Rayleigh number. 

In some simple instances, this technique amounts to approximate weighted averaging [5]; 
there is also a resemblance to the zero-dimensions method of [6]. 

We replace (i0) by an algebraic equation at the point z = 1/2 on a five-point net; the 
four boundary conditions for m allow us to choose the values of m at the nodes in terms of 
the value at the central point z = 1/2. 

558 



The boundary condition 

We put 

'(0) = m'(1) is best used in integral style for a coarse net: 
I 

( o"dz = o .  (12) 

o0=o(0); o l = - o ( + ) ; ,  o = o ( + ) ;  o3=o(-~-~ ) ;  o 4 = o ( 1  ) 

and retain the same symbols for the derivatives of ~; we specify that (12) shall apply for 
the integral calculated by Simpson's method, which gives 

og + o]+2o"-}- 4 (o~ + o~):= O. (13) 
The series expansions 

o~o0+ ~-o0+ % ,  

1 1 
o , -  

f 
go with the boundary conditions ~o = ~ = 0, ~ = ~4 to give 

o~ + o~ ~ 32 (o, + o3). (14) 

A difference approximation is 

o ~ ( o  0 - 2 o 1 + o  )16; o" . -~ (o ,+o~- -2o)  16; (15) 

o~ ~ ( o -  2o 3 + o~) 16; o TM ~ (o'i --  2o" + m~) 16, 

which is used with (13) and (141} to give 

o I + o 3 ~ o .  (16) 

Equations (15) and (16) allow us to express the derivatives at point z = 1/2in terms of the 
value of the function at that point, namely, 

o " ~ - - 1 6 o ,  o t v ~ 5 1 2 o .  (17) 

Condi t ion  (16) i s  s u f f i c i e n t  to d e r i v e  (17) ,  and ~ and ~3 s e p a r a t e l y  a re  not  r e q u i r e d .  
The re fo r e ,  the c o n d i t i o n  of (12) t h a t  the  d e r i v a t i v e s  a t  the boundar i e s  a re  zero i s  not  used.  

We r e p l a c e  (10) by an a l g e b r a i c  equa t ion  [u = u ( 1 / 2 ) ,  v = v ( 1 / 2 ) ] :  

- -  A Y-- RoEu - -  A R ~ v  + (512 + 32~ + ~Z)o =: O. (18) 

Here and subsequently, it is convenient to assume that 

.... 8t, (19)  

and then (18) becomes 

-- A ~--- R2tu--ARitv -i- 8(t 2 '~- 4t + 8)o :~ 0. 
6 

Equations (8) and (9) are replaced by an algebraic equation at z = 1/2 by means of a 
three-polnt net. 

We put 

u0=u(O ), u = u ( 2  ) ,  ui=u(1); v0=v(O ), v : = v  

and retain the same subscripts for the derivatives of u and v; 
boundary conditions is 

2 u - - 2 u o = B u o - - A v  o, 2 v - - 2 ~ = B u 0 - - A v  o 

and this implies that 

2 - - A  A 
U 0 : =  - U ~ ~ ,  

2 _ B - - A  2 _ B - - A  

(20) 

a simple approximation for the 
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B 2 + B  
v o -  u +  

2 + B - - A  2 + B - - A  
u. 

A difference approximation is 

u" ~ 4 (u o - -  2u + u,), v" ~ 4 (v o - -  2v + vi) 

and this is used with the values for uo and vo to get 

where 

(u,=v,=O) 

A 
I + B - -  -- 

2 

u"~--8 2 + B - - A  u+ 

4B 

2 + B - - A  

4A 
2 + B - - A  v, 

B 
I + - - - - A  

2 
2 + B - - A  v. 

The difference equations corresponding to (8)-(10) take the form 

- - 8 b t u + 4 r v  + o = O, 

- - 4 L q u - - 8 L ~ v - ] - ~  = O, 

- - t A - ~ R 2 u - - t A R t v + S c ~ = O ,  

t --  

A B I + B - - - -  1 -~----A 
bi t q -  2 b 2 = t + 2 

8 2 + B - - A  ' 2 + B - - A  

B A 
c = t z-#- 4t + 8' q -  - -  , r ~= 

2+ B - - A  2 + B - - A  

(21) 

(22) 

(23) 

The determinant of (21)-(23) is equated to zero to give the following relation between 
the parameters : 

L (8+4t-i-t2)(1 §  t + ~- ( l+q  - - r )  
' __ r ( 1 - - L ) + L ( 1 - - 2 t )  �9 - ? - R  2. (24) 

R,---64 ~ - .  t ( q ( 1 - - L ) - ? l v - 2 l )  q ( 1 - - L ) - I - l + 2 t  6 

Minimization of (24) with respect to t gives the boundary to the monotonic stability as 
R, = f(R2, L, y, 6); the minimization itself represents no essential difficulty. 

Formula (24) takes the following form for L = I: 

~ :64 ( t2 - -4 t  + 8)( 1 + t ) '  (25) 

where 

%' R~ A; a~=?expA-- A; a - (26) = i §  T 

Minimization of (25) involves solving the cubic equation 

g(t) = 2 t  3+(~-~-4) t 2 - 8 ~ 0 ,  (27) 

whose only positive root can be determined approximately; we take t = i as the initial ap- 
proximation and perform a single iteration in Newton's method to get 

t ,  ~ 1 g(1) 8 + 9~ 
- -  , ( 2 8 )  g' (1) 14 _l. 2o~ 

= ~ (29) ~ 6 4 ( t 2 , + 4 G . §  1--  t~. ]" 

Formula (28) is unsuitable as a § (a § 0), and in that case we have directly from 
(27) that 
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TABLE i. Comparison of ~, and ~** Given by (29) and (35) with 
the ~o Given by Galerkin's Method 

o ~L** P'o .tt, k** ko k .  

--0,9 
--0,5 
--0,2 

0 
0,2 
0,5 

l 
2 
5 

932 
1196 
1285 
1331 
1364 
1405 
1450 
1507 
1575 
1660 

1074 
1215 
1274 
1304 
1330 
1362 
1404 
1462 
1550 
1708 

768 
1068 
1178 
1230 
1272 
1328 
1376 
1455 
1545 
1650 

1,60 
2,42 
2,50 
2,53 
2,56 
2,61 
2,68 
2,73 
2,83 
2,94 

1,80 
2,35 
2,50 
2,55 
2,60 
2,67 
2,75 
2,84 
2,96 
3,11 

1,80 
2,45 
2,53 
2,58 
2,61 
2,65 
2,70 
2,76 
2,83 
2,9t 

1i 2 
I t  

We s e e  f r o m  (25)  t h a t  t h e r e  i s  no min imum i n  t h i s  f u n c t i o n  f o r  ~ < --1 (a  < 0) i f  t > 0 ,  
w h i c h  a g r e e s  w i t h  t h e  o b s e r v a t i o n  t h a t  ~ < --1 m e a n s  t h a t  t h e r e  i s  a n  u n s t a b l e  s t e a d y - s t a t e  
s o l u t i o n  t o  ( 1 ) - ( 4 )  f o r  V = 0 a n d ,  t h e r e f o r e ,  ~ < --1 means  t h a t  c o n v e c t i o n  a l w a y s  o c c u r s  f o r  
a p p r o p r i a t e  i n i t i a l  c o n d i t i o n s .  T h e r e  a r e  no  c r i t i c a l  c o n d i t i o n s .  

We d e n o t e  t h e  r i g h t  s i d e  o f  (7)  by  f ( A ) ,  f (A)  = A(y  + e x p ( - - A ) ) ,  w h i c h  g i v e s  

[ '  (A) = y - -  (A - -  1) exp ( - -  A). (30)  

The c o n d i t i o n  o < --1 o f  (26)  means  t h a t  f ' ( A )  < 0 ,  so  o < --1 o c c u r s  o n l y  o v e r  t h e  d e c r e a s i n g  
r a n g e  A, < A < A2 f o r  f ( A ) ,  w h i c h  i t s e l f  o c c u r s  f o r  y < e - 2  [ 1 ] .  I n  t h a t  c a s e ,  (7)  h a s  t h r e e  
roots in the range ~ < 5 < 62, and the middle one of these falls in the decreasing range of 
f(A) that corresponds to an unstable steady-state solution to (1)-(4) for V = 0. 

The quantities A~ and ~: and also A= and ~= correspond to the critical conditions for 
ignition and extinction, respectively [I]; if y<< i, it follows from (7) and f'(A) = 0, as 
implied by (30), that 

A ~ l ~ e y ,  6i ~ 1 ' -- - ~ - y ,  ~ = - - 1 ,  (31) 

1 
In - - - -  1 

Y 

Y 
A . = l n  

e 

In --I  - - 1  

( ' t  62 ~ ,j 1 n Y 1 ~ 1 ' 
7 In ---- 1 

? 
~ = - - l .  

(32)  

The stable roots of (7), i.e., those occurring for A < A,, A > A=, imply that ~ exceeds 
--I, and this always occurs for y > --e -2 

The same coarse net has also been used with other approximations, in particular, the fol- 
lowing. The integral relation 

1 

.[ _ u '  d z  - i -  Uo = 0 
o 

applies by virtue of u(1) = 0; the following is the value of the integral given by Simpson's 
formula: 

u o ' i - u ; - i  4u' ~-6u o =  O. (33) 

! 
Boundary condition (Ii) gives us uo -- ouo for L = i; we use (33) with the difference 

approximation 

u ' = u ~ - - u  0, u " - - 4 ( u  0 - 2 u  + u 0 ,  

1 1 1 u - u , -  u;+ u;, 
2 g - 48 
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Fig. I. Regions of convective stability: 
I) convective stability; II) region of sta- 
bility for a reaction occurring in the ki- 
netic mode but instability for a reaction 
occurring in the diffusion mode; III) re- 
gion of instability. 

" U.~ v and the equations u, = 0, u, = 0, 

i; 

= ~u[ implied by (8) 

u 0 ,~,  

2 u  
, u " = - - 8 - -  

This approximation resembles (28) and (29) 

to get 

3 ~ + t  u. 
3 + t  

in leading to the following results for L = 

t** ~ 155-~- 69= , (34)  
2 6 2  - -  54~ 

( 3 ~ §  ) (35)  
.u,~ = 64 (t,  .~ + 4t** -- 8) 1 -'- t** (3 -~- t**) ' 

Table I compares calculated values for ~, and ~** given by (28), (29), (34), and (35) 
with the critical number ~o calculated by Galerkin's method via a single basis function w = 
z2(l- z) 2 as in [3]. 

Table 1 also gives for comparison the wave numbers k = /~--= /~ at which the values ~,, 
~o, and ~** are attained, respectively; if we eliminate the neighborhood of ~ = --I and con- 
sider only the range--0.5 ~ < ~, there is only 2-3% deviation of ~** from ~o. Also, ~, 
gives a good approximation, particularly for ~ > 0. 

A relationship between u and uo is 

1 I l 
u -  uo = + - g  + -4-8- Uo , 

where u~ = ou,, u~ - ~u,, and u~" ~ o~uo; we then get a result close to that given in the 

table. 

Therefore, a simple net gives a stable result largely independent of the method of ap- 
proxlmation. The method is readily extended to a finer net, but the most interesting result 
appears to be that a very simple net can give an adequate approximation. Another interesting 
point is that convenient working formulas are obtained. 

Of course, this net provides only the least eigenvalue; a finer net with more nodes must 
be used if the larger eigenvalues are required. 

In conclusion, we describe the structure of the convective region for L = i and y < e -~, 
i.e., in the region of the three steady-state solutions. 

Various possible modes can occur in a heterogeneous catalytic reaction, where 7 and 
are the decisive factors [i]. The conditions for convection vary similarly. It follows from 
(7) that there will be a jump from the kinetic region to the diffusion one and back again for 
the critical ignition and extinction conditions if y < e-2; the catalyst temperature and the 
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product concentration then vary sharply. There are no critical conditions if y > e -~, because 
(7) has a single solution, so the temperature and concentration vary smoothly. The critical 
ignition and extinction conditions are defined by (31) and (32) for y~ I. 

We consider the expression for the critical convection conditions for these modes; since 
o = --i, ~ = 0 near the ignition and extinction limits, as (25) shows, we have 

? R2 ~ 1 64(t 2 ~ 4 t  ~ 8 ) ,  i = 1,2. 
R~ + T Ai 

H e r e  (31) and (32) d e f i n e  Ax and A2. 

F i g u r e  1 shows t h e s e  r e l a t i o n s h i p s  q u a l i t a t i v e l y  i n  Rx, ( y / ~ ) R a  c o o r d i n a t e s ,  whe re  c u r v e  
1 c o r r e s p o n d s  t o  t h e  i g n i t i o n  c o n d i t i o n  ( i  = 1) and c u r v e  2 c o r r e s p o n d s  t o  t h e  e x t i n c t i o n  
c o n d i t i o n  ( i  = 2 ) .  The r e g i o n  o f  c o n v e c t i v e  s t a b i l i t y  l i e s  b e l o w  c u r v e  2 ( r e g i o n  I ) ;  I I I  
c o r r e s p o n d s  t o  t h e  r e g i o n  o f  c o n v e c t i v e  i n s t a b i l i t y ;  and I I  i s  t h e  r e g i o n  o f  c o n v e c t i v e  s t a -  
b i l i t y  f o r  t h e  k i n e t i c  mode b u t  o f  i n s t a b i l i t y  f o r  t h e  d i f f u s i o n  mode.  

It is clear that conditions are most favorable to convection when the reaction occurs in 
the diffusion mode; this is physically reasonable, since then there are the largest tempera- 
ture and concentration differences on account of the reaction. 

Curve 1 is displaced continuously upward as we recede from the ignition limit, since the 
temperature rise at the catalyst and the product concentration there are reduced by the re- 
sulting convection. When the critical conditions for ignition are reached, straight line 1 
for convective stability passes stepwise into region I; i.e., in region II there cannot be a 
single straight line that separates the regions of convective stability and instability for 
any ~ and y. 

NOTATION 

u, v, temperature variations; ~, vertical velocity variation; kl, k2, Fourier transform 
parameters (wave numbers); ~ = k~ + k~, t = ~/8; ~, Rayleigh number; o, parameter in boundary 
condition; u' = ou, ~ = (i + ~)/(2 + ~); X!, initial substance; X2, reaction product; ~i, 
stoichiometric coefficient; k(T), rate constant; V, velocity vector; w, vertical velocity; 
p, pressure; a, product concentration; 8, temperature; r, time; h, layer thickness; ~, ki- 
nematic viscosity; D, diffusion coefficient; ~ , thermal diffusivity; g, gravitational ac- 
celeration; ~, volume expansion coefficient; R, universal gas constant; E, activation energy; 
Po, density in initial state; To, upper wall temperature; B, diffusion analog of the volume 
expansion coefficient; Q, heat of reaction; i~, thermal conductivity; ko, preexponential fac- 
tor; e, unit vector antiparallel to g; Pr, Prandtl number; Le, Lewis number; R,, thermal Ray- 
leigh number; R2, concentration Rayleigh number; ~, Frank-Kamenetskii parameter; y, ratio of 
reaction rate to the diffusion rate; A, temperature at z = 0; I, Laplace transform parameter 
(perturbation decrement); b~, b2, c, q, r, combinations of the kinetic parameters 6 and y. 
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